THE PROBLEM OF NONSTEADY DIFFUSION
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A golution has been derived for the nonsteady diffusion equation for two flasks of identical
volume, connected by a capillary, with consideration given to the transition process and the
diffusion resistance of the flasks., This solution is compared with the approximate Ney and
Armistead solution,

The two-flask method of experimentally measuring the coefficients of mutual gas diffusion has recently
gained widespread acceptance. The experimental data are processed according to the following Ney and
Armistead {1] formula:
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It was assumed in the derivation of this formula that:

1. The concentration varies linearly along the capillary length.

2, A concentration gradient exists only in the capillary,

3. The capillary volume is considerably smaller than the flask volumes containing the test gases,

Our paper is devoted to evaluating the effect of the above-cited assumptions on the two-flask method
for measuring the diffusion coefficients.

Let us consider the diffusion of a gas through a capillary connecting two spherical flasks of identical
volume and filled with a mixture of different gases. It is assumed that the temperature and pressure within
these vessels are identical, The capillary ends are located at the flask centers and we assume that the con-
centrations are distributed with spherical symmetry about the vessel centers. In this formulation of the
problem one end of the capillary can be replaced by a spherical surface source, and the other by a sink,
Here, to preserve the conditions of balance the cross-sectional area of the capillary must be equal to the
area of the surface source (sink), i.e., TI’I‘g = 47rr% or ry = (1/2)rc.

With the above-indicated assumptions, the system of diffusion equations in the one-dimensional case
for a capillary and the flasks can be written as follows:
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with the following initial and boundary conditions: whent = 0, ¢ =cg for 0 < x = L; ¢y = ¢y and ¢, = ¢ for
0<r=R;
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4. ¢(0, ) =cy(r, 1), c(L, ) =c((ry, t);
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The solution of this problem can be found with the Laplace transform [2]. Omitting the extremely
cumbersome calculations, we have
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These solutions describe the concentration distribution of the gas over the capillary length and along
the flask radii. The investigator is most interested in the time relationship that applies to the average con-
centration in the vessels. After integration of (3) and () in limits from 0 to R we find the following expres-
sions for the average concentrations:
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TABLE 2, Time to Reach a
Quasisteady State for Various

TABLE 1. Roots of the Character- Capillary Geometries
istic Equation (5) e ! Fo : :
| |
R/L. 1o/L, & ‘ thy l} Uz ' Ha 6-107¢ 0,15 (0,14) 30(28)
l 0,015 0,51 (0,49) | 102 (98)
0,5, 0,01; 6.1074] 0,03447 | 3,1113 | 6,2215 Note: We have calculated t for
0,5 0,05 0,015| 0,1692 | 3,0126 | 5,9830 D =0,5:10" m%/sec and L2 = 1 m?,

We bring (5) to a form convenient for analysis, It is simple to demonstrate that when € « 1 even gy
« 1, Expanding the right-hand member of (5) in powers of y; and limiting ourselves to terms of the first
order of smallness, we find
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The remaining values of (7 will be closeto (n — L7, n =2,3,...,%,
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It will be interesting to evaluate the magnitude of the average gas concentration in the flask as a ratio
of the concentration at the end of the capillary. From (2) and (6) for the quasisteady state we find
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if the geometric dimensions of the installation are known, the resulting expression thus makes it possible
immediately to evaluate the error which we introduce into the concentration by neglecting the diffusion re-
sistance of the flasks.

In order to carry out certain numerical calculations we found the three first roots of the characteristic
equation (5) (see Table 1) for two values of the parameter &.

With 2) we calculated the time to establish the quasisteady state in the assumption that the concentra-
tion in the middle of the capillary differs from the linear distribution by 1%. The results are shown in
Table 2. The values of the Fourier number virtually coincide with the values (shown in parenthesis) cal-
culated earlier from a formula derived without consideration of the concentration gradient in the vessels,
and this formula [3], when V, = V,, has the form
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Formula (9) can thus be used to evaluate the time needed to reach the quasisteady state in a given ex-~
perimental installation. Moreover, it can be demonstrated that (9) can be reduced to solutions (6) and (7)
(when x = L and 0, respectively), if the roots derived from the characteristic equation (10) are replaced by
the expression oz%l/ a+ rc/ L). The average concentrations calculated from (9), with the corrected values
of the roots, are in very good agreement with the quantities calculated according to the rigorous formula

(7) for all of the values of the Fourier number (see Table 3), This markedly reduces the volume of calcula-
tion,
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TABLE 3. The Average Concentration as a Function of the Dimen-
sionless Time for Various Values of the Parameter &

£ =6.10", ¢® =0,5002 e=0,015, ¢* =0,5037
Fo -
1 II jeng v v VI

0,5 0,000517 0,000518 0,000295 0,0119 0,0120 0,0069
l 0,000774 0,000775 0,000591 0,0189 0,0190 0,0138
5 0,00315 0,00315 0,00295 0,0714 0,0712 0,0652
10 0,00608 0,00607 0,0587 0,1290 0,1287 0,1220
50 0,0290 0,0290 0,0287 0,3835 0,3833 0,3778
100 0,0561 0,0560 0,0557 0,4752 0,4750 0,4728
200 0,1059 0,1058 0,1062 0,5037 0,5037 0,5037
300 0,1501 0,1501 0,1492 0,5037 0,5037 0,5037
500 0,2242 0,2241 | 0,2230 0,5037 0, 5037 0,5037

Note: 1.1V) The value of ¢, from formula (7 11, V) from (9); 1L VI) from (1),

The concentration values in columns 4 and 7 of Table 3 were calculated from (1) with consideration of
the Maxwell —Rayleigh [4] end correction which reduces to the replacement of the actual length L by L
=L +1.64r
. cr

We see from the cited data that the transition process has a marked effect on the concentration distri-
bution for times comparable to the time needed to establish the quasisteady state. The effect of the transi-
tion process on the accuracy with which the diffusion coefficients are measured will be a function, in the
final analysis, of the relationship between the duration of the experiment and the time at which the quasi-
steady state sets in,

1t also follows from these data that the correction for the end effect is quite substantial (see Table 3).
The resulting solutions are therefore quite necessary for an exact analysis of the experimental data, The
Maxwell - Rayleigh end correction apparently is not sufficiently correct, since in its calculation the finite-
ness of the volumes was not taken into consideration, nor the approximate spherical symmetry of the dif-
fusion flux within the volumes. The importance of the correction factor for the diffusion in the volumes
can be demonstrated with a specific example. Thus, when € = 6 - 10-4 the diffusion coefficient must be re-
duced by approximately 1%, whereas when & = 0,015 it must be reduced by ~10%, when the contents of the
volumes are analyzed following a 10% change in their concentration.

These calculations also show that the Maxwell —Rayleigh correction is somewhat larger than necessary.

NOTATION

Cots Co» C1» Cpp € are the molar concentrations of the gas in the flasks at the initial instant, at the instant
t, in sec, and after complete mixing;

R, Vi, V. are, respectively, the radius and volumes of the flasks;

D : is the diffusion coefficient;

re, L, a are, respectively, the radius, the length, and the area of the capillary cross section;
e = aL/V; is the ratio of the capillary volume to the volume of flask 1;

Fo = Dt/L? is the Fourier diffusion number,
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